De novo assembly of complex genomes using 3rd generation sequencing Michael Schatz

Jan 15, 2012 PAG-XX: Sequencing Complex Genomes

@mike_schatz / #PAGXX

Assembling a Genome

2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are PAG genomes hard to assemble?

I. Instrumentation:

- (Very) large genomes, imperfect sequencing

2. Biological:

- (Very) High ploidy, heterozygosity, repeat content

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Quality

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Hybrid Sequencing

Illumina Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing

Lower throughput (600Mbp/day) Lower accuracy (~85%) Long reads (1-2kbp+)

SMRT Sequencing

Imaging of florescent phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

SMRT Sequencing Data

Yeast (12 Mbp genome)

65 SMRT cells 734,151 reads after filtering Mean: 642.3 +/- 587.3 Median: 553 Max: 8,495

FAAGCAGTTGAAAACTATGTGT**-**GATTTAG-ATAAAGAACATG<mark>G</mark>AAG 'GATCCATT-AGAAGA-AAACGCAAAAGGC -TATAAA<mark>T</mark>CAGTTGATCCATT<mark>A</mark>AGAA-A<mark>G</mark>AAACGC-AAAGGC-GCTAGG CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCCG C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA –AGGAGGGGAAAGGGGGGAATATCT–ΑΤΑΑΑΑGATTACAAATTAGA–ΤGA GAGGAGG---AA---GAATATCT<mark>G</mark>AT-AAAGATTACAAATT-GA<mark>G</mark>TGA ΑСТ-ΑΑΤΤCΑCAATA-ΑΑΤΑΑCACTTTTA-ΑCAGAATTGAT -GGAA-GTT ACTAAATTCACAA-ATAATAACACTTTTTAGACAAAATTGATGGGAAGGTT TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA -GAGAGATCC-AAACAAT-GGC<mark>G</mark>ATCG-CTTTGA<mark>C</mark>GTTAC<mark>A</mark>AATCAAA ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG

TTGTAAGCAGTTGAAAACTATGTGT<mark>G</mark>GATTTAG<mark>A</mark>ATAAAGAACATG<mark>A</mark>AAG

Sample of 100k reads aligned with BLASR requiring >100bp alignment Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch

PacBio Error Correction http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads (SR) to long reads (LR)
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, Walenz, BP, Martin, J, Howard, J, Ganapathy, G, Wang, Z, Rasko, DA, McCombie, WR, Jarvis, ED, Phillippy, AM. (2012) *Under Review*

Error Correction Results

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina

SMRT-assembly

- Co-assemble error corrected long reads with short reads
 - Long reads natively span repeats (red)
 - Guards against mis-assemblies in draft assembly
 - Use all available data at once
- Challenges
 - Assembler must supports a wide mix of read lengths

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

Assembly Results

SMRT-assembly results of 50x PacBio corrected coverage of E. coli K12 Long reads lead to **contigs** over 1Mbp

SMRT-Assembly Results

Reference bp

Assembly bp # Contigs

Max Contig Length

N50

Technology

Organism

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case

Transcript Alignment

- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
 - Raw reads and raw alignments (red) have many spurious indels inducing false frameshifts and other artifacts
 - Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing
- New collaboration with Gingeras Lab looking at splicing in human

Why are PAG genomes hard to assemble?

I. Instrumentation:

- (Very) large genomes, imperfect sequencing

2. Biological:

- (Very) High ploidy, heterozygosity, repeats

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

With new sequencing technologies and improved algorithms we can address these challenges

=> Cautiously optimistic

Acknowledgements

Schatzlab Giuseppe Narzisi Mitch Bekritsky Matt Titmus Hayan Lee James Gurtowski Rohith Menon Goutham Bhat <u>CSHL</u> Dick McCombie Melissa Kramer Eric Antonio Mike Wigler Zach Lippman Doreen Ware Ivan Iossifov <u>NBACC</u> Adam Phillipy Sergey Koren

<u>JHU</u> Steven Salzberg Ben Langmead Jeff Leek Univ. of Maryland Mihai Pop Art Delcher Jimmy Lin David Kelley Dan Sommer Cole Trapnell

Thank You

http://schatzlab.cshl.edu @mike_schatz / #PAGXX

More Discussion @ PacBio Workshop 1:30 Tuesday